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Fast heat transfer calculations in supercritical fluids versus hydrodynamic approach
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This study investigates the heat transfer in a simple pure fluid whose temperature is slightly above its critical
temperature. We propose an efficient numerical method to predict the heat transfer in such fluids when the
gravity can be neglected. The method, based on a simplified thermodynamic approach, is compared with direct
numerical simulations of the Navier-Stokes and energy equations performed foai@DSFE. A realistic
equation of state is used to describe both fluids. The proposed method agrees with the full hydrodynamic
solution and provides a huge gain in computation time. The connection between the purely thermodynamic and
hydrodynamic descriptions is also discussed.
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I. INTRODUCTION the highly nonlinear equations of statEOS used to de-
scribe real near-critical fluids. Two computational ap-

In fluids near their liquid-gas critical point, the character-proaches have been suggested for confined fluids in absence
istic size of the density fluctuations becomes larger than thef convection. In one of them, which we will refer as the
characteristic size of the molecular structure. Consequentlythermodynamic approachT5], the Piston effect is taken
the fluid behavior is ruled by fluctuations and not by itsinto account by a supplementary tegnintroduced in the
particular molecular structure. This implies that most fluidsheat conduction equation as follows:
behave similarly near the critical poiriike the 3D Ising

. 4 . I T 1
mode). This universality makes the study of near critical — = V. (KVT)+g(T), (1)
fluids very appealing. Due to their very low thermal diffusiv- gt Cp
ity and to their very large thermal expansion and compress-

ibility, the study of heat transfer in such fluids is particularly With

challenging. When such a fluid is confined in a heated cauvity, c,\ [T\ ap

a very thin hot boundary layer develops and induces a fast g(T):(l— —”) —) —, (2)
expansion that compresses the rest of the fluid. The resulting Cp/\ 9P/, at

pressure waves spread at the sound velogigy very rap-

idly) and adiabatically compress the bulk of the fluid, whichWhereT is the local fluid temperature, (c,) the specific

is therefore homogeneously heated. After several sounf€at at constant volum@ressurgper unit massp the local
nsity, andk the thermal conductivity of the fluid. One can

wave periods the pressure is already equilibrated and can _ " .
assumed to be nearly homogeneous along the cavity. Durin@o"e that the terng(T) is only relevant near the critical point
the initial stage of heating, this process of energy transfe®VNerec,>c,.

called “Piston effect’[1,2], is much more efficient than the 1€ fluid motions are neglected and the presqyras-

usual diffusion scenario. Indeed, if the Piston effect wereSUmed to be homogeneous, is only a function of timehe
absent, the bulk of the fluid would remain at the initial tem-Pressurep is determined from the fluid mass conservation
perature. and computed via the nonlinear expresdibh

In the industrial domain, the Piston effect can be used to
transfer heat much faster than by conduction. This feature f(ap/aT)paT/at dv
can be readily applied to the development of heat exchangers P _ v 3)
under microgravity condition§3,4] where heat transfer by ot '
natural convection is obviously not possible. JUPXT dv
While the physical origin of the Piston effect is well un-
derstood, the calculations required to represent realistic eXyhere y1=p (dp/dp)+ is the isothermal compressibility
perimental conditions are difficult because the inherent nongndy the volume of the fluid sample. The resolution of Eq.
linear dynamical behavior of such fluids is complicated by(3) requires an iterative procedure for each time step. This
consists in calculating the temperatimethe whole fluid vol-
umeusing Eqgs(1) and(2) for some trial value op (and thus
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Subsequent computation of thelumeintegrals in Eq.(3) Several simplifications have to be introduced before pre-
gives a value ofgp/dt from which the pressurg is cor-  senting the formulation of the energy and pressure equations
rected. The correction step is repeated until convergenceised in the present method. As stated in the Introduction, we
This approach has been extensively used by several groupse mainly interested in the description of the early stages of
[6,7] in one-dimensional(1D) calculation in conjunction heating, i.e., on times of the order of the Piston effect time
with the restricted cubic EO$3] and the finite difference scale [12]. In this regime, the thermodynamic quantities
numerical method. However, its extension to higher dimen<,,c, .k, ... are constant in the bulk of the fluid and only
sions induces a large computational effort. First, it requires ary in the very thin hot and cold boundary layers. Thus, the
sophisticated programming and, second, the computer rdellowing assumptions can be made.

sources rise steeply because the thermodynamic variables (1) The spatially varying parametersy, c,, k, etc)in
have to be evaluated at each grid point of the computationdtg. (1) can be replaced by the spatially homogeneous time-
domain by means of the iterative procedure to solve(Bg. dependent values, which will be denoted hereafter by an

Teams with expertise in theoretical hydrodynamics haveyverbar(e.g.,c,). These values are calculated with the EOS
developed a rigorous hydrodynamic approgthin which using density{p) (where the brackets indicate the spatial

the Navier-Stokes and energy equations are coupled with t — (). W te that it ;
EOS. This set of equations has been solved analytically P'i?\(;ﬁ;?g:ta;sdtﬁ;ezjgt?m ig(c)lbseg note that densitfp) is

1D by asymptotic matching techniqud and also by direct This assumption is equivalent to the statement that all

numerical simulation(DNS) [10] via the finite volume o -
method[11] both in 1D and 2D. For the sake of simplicity, these_qua_nuues should be calculated using the temperature
alueT=T(t) obtained from the EOS for the pressyrand

the van der Waals EOS has been used in all these work . . .
Although this simple EOS provides satisfactory qualitativen® densit(p). The quantities calculated in such a way cor-

results, accuracy can only be ensured by using a realisttéSPond to the overbar variables mentioned above. In gen-
EOS. However, as shown in the present study, inserting &ral, for a thermodynamic quantity, X+ (X).

realistic EOS into the hydrodynamic equations leads to a (2) During the system evolution, the thermodynamic
much more difficult computational task, which involves pro- quantities are supposed not to vary sharply in time.
hibitively large calculation times. For instance, to reach the (3) The initial temperaturd is uniform.

final steady state in one of the 1D runs carried out for the Assumption(3) is made for simplicity and can be relaxed
cubic EOS in the present study, one requires about twdf necessary. However, the assumpti¢bsand(2) are essen-
months on a 800 MHz PC. tial for this approach.

The purpose of this paper is twofold. We first formulate  In the following section we formulate the energy and
an approximate method, which is both simple and répid.,  pressure equations that govern the kinetics of the supercriti-
the same calculation cited above required only 20 ahd  cal fluid in a reduced gravity environment.
then compare it with the DNS formalism. Second, since this
work is the first one to use a realistic EOS for the DNS, we A. Energy equation
describe in detail the hydrodynamic approach for the near- ; :
critical fluids with a general EOS. We expect that this com- _Usmg assumptiortl) and the constancy dfp), one can

- S . Write
plete and unified description may be useful for the scientific
community, as the hydrodynamic method is dispersed over T T AT
many (some of them not easily accessibfriblications. dp=(ap/dT),dT ©

The paper is organized as follows. In Sec. Il we describeyg that term(2) reduces to

fast calculation method. Section 1l presents the hydrody-

namic approach. Sec. IV deals with the comparison between o EU dT
both approaches. The conclusions are given in Sec. V. g(T)= l_E_ ar (6)
P
Il. FAST CALCULATION METHOD and Eq.(1) can be reduced to the equation
The method is based on the thermodynamic approach, i.e., o1/ —
. . —=DV?y. (7)
on the energy equatiofil). However, a different pressure Jt

equation will be used instead of E¢3). While the latter

equation integrates over the fluwlume we are looking for  The thermal diffusion Coefﬁcie@:f/(mgp depends off,
a pressure equation that integrates only overtthendaries e on timet only, and

of the fluid domain. Such an equation would accelerate the

iterative procedure. However, its advantage would not be (X, =T(X,1)—To—E(T) (8)
decisive without an appropriate numerical method for @&g.

that should only require computation of the thermodynamicyiih x the position vector and

variables at the boundaries. Such a numerical method is

called Boundary Element MethoBEM) and is broadly o T o\ _
used in heat transfer problems. The BEM is expounded in E(T)=J (1—:” dT. 9
Appendix A. To Cp
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The initial condition is#|,—o=0 because according to as- XT_[ 9p
sumption(3), c_T a_T) pds
P P
_ p= . (15
Tli-0=To. (10) )ﬂpC
Cp

Finally, a known dependence Bf=Df(T), whereDgyis & |5 order to use the second law of thermodynamics
dimensional constant arfds a nondimensional function, al-

lows timet to be replaced by an independent variable 5Q
defined by the equation (pSsy= = (16)
1%
d_T:f(—) (11) where 5Q is the total change of the amount of heat of the
dt ' fluid, one needs to separate out the averages of the form

(YZ) in Eq. (15). Under the assumption that(or Z) does
not vary sharply over the fluid volume, the following ap-

whose initial condition can be imposed ds_,=0. SinceT proximation holds(see Appendix

is a function oft only, this initial-value problem is fully

defined. The substitution of Eq1l) into Eq. (7) results in (YD ~(YNZ). (17)
the linear diffusion problem with the constant diffusion co-
efficient D4 Among the quantities that appear in Egj5), only y andc,
vary sharply near the critical point and could thus vary
Ay 5 strongly across the fluid volume. However, only their ratio,
57~ DaVy, (12 which remains constant near the critical point, enters Eq.

(15). Hence, the average of this ratio as well as the remainder
averages of slowly varying quantities can be separated. By

¥l,-0=0. using the expression for the total heat change rate
It can be solved with the BEM as shown in Appendix A. 6Q aT
Usually, the “temperature step” boundary condition has St AkEdA’ (18)

been applied for 1D problems. This heating process corre-

sponds to a fluid cell, initially at a uniform temperature, \yhere the right-hand side is simply the integrated heat flux

which is submitted to a sudden increase of temperature at . : . .
one of its boundaries, while the other is kept at the initialSlJppIIeOI fo the fluid through its boundady(with n the ex-

temperature(Dirichlet boundary conditions This heating ternal normal vector to i one gets to the final expression

condition is physically unrealistic because the initial value a7 1 JT
for the heat flux at the heated boundary is infinite. Instead, in — = _f k—dA. (19)
this work we use Neumann-Dirichlet boundary conditions: a dt  (p)vc,Ja on

heat fluxq;, is imposed at one of the boundaries, while the )
initial temperatureT,, is maintained at the other boundary. N the fast calculation method, EGL9) plays the role of the
pressure equatiofB). Equation(19) is both substituted di-

rectly into Eq.(6) and solved to get temperatuile using

) . ] ) ) ) _initial condition (10). The obtained value foll is used to
Let us begin by writing the linearized relationship, valid g¢q}ye Eq.(11) and to calculate all the fluid properties. Note

under assumptio(@): that T should not be confused witfi from Egs. (18 and

B. Boundary form of the pressure equation

ap ap (19). The spatially varying fluid temperaturé has to be
op=|—| 6s+|—| op, (13 calculated with Eqs(8) and (12).
s ap 1
s SubstitutingT by (T), Eg. (19) coincides with the result

of Onuki and Ferrell2], which was derived by a different
wheresis the fluid entropy per unit mass addstands for the  \ay. Equation(19), written in terms of(T), was employed
variation of the thermodynamic quantity during the time in-recently[13,14 to simulate the gravitational convection in
terval 6t. From the mass conservation it follows thap) 2D py the finite difference method. However, the finite dif-

=0, and, from the pressure homogeneity thép) = 5p. ference numerical method is not the most efficient for the
By averaging Eq(13) one obtains computation of heat transfer problems.
J J
<(§_z) 5S>+< a_p >5p=o. " lIl. HYDRODYNAMIC APPROACH
p Pls Analytical analysis as well as direct simulations were car-

ried out in previous works. Bailly and Zappdlil5] have
The use of appropriate thermodynamic relationships leads tdeveloped a complete hydrodynamic theory of density relax-
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ation after a temperature step at the boundary of a cell filled de 1 ap\ 1dp dT
with a nearly supercritical fluid in microgravity conditions. FTaRbY p—T(—) d_+c”d_' (24
In Ref. [15] they describe the different stages of the fluid top JaT p t t

relaxation towards its complete thermodynamic equilibrium, o )
covering the acoustic, Piston effect, and heat diffusion time! Nen, by substituting Eqg20) and (22) into Eq. (24) one
scale. The analytical approach leans on the matchefbPtains
asymptotic expansions to solve the 1D Navier-Stokes equa-
tions for a viscous, low-heat-diffusing, near-critical van der
Waals fluid(see Refs[9] and[15]). The DNS of the Navier-
Stokes equations were performed in 1D and 2D geometries.
Some of them take into account gravity effects, as for exNote that Eq.(25) involvesc, and notc, as in thermody-
ample, the interaction of a near-critical thermal plume with anamic equatior{l). The “c, formulation” is preferred to the
thermostated boundaf$6]. Numerical results are also avail- “ c, formulation” because the much weaker near-critical di-
able on thermovibrational mechanisfis]. vergence ot, (in comparison witfc,,) allowsc, assumed to

To date the hydrodynamic approach has been solved fdse constant.
the classical, van der Waals, EOS. This EOS allows a con- The boundary conditions for the Navier-Stokes equations
siderable reduction in computational time when compared tgre ;=0 at the walls. The initial conditions are given by
the restricted cubic EOS. However, it does not provide

dT—ﬁ KVT)—T op V.u+d 25
pcva_ ( )_ ﬁp U+ d. ( )

e . ; Mo 8ﬁ(t=0)=0. For energy equatiof25) the boundary and ini-
correct description of the real fluids. In particular, it fails to tial conditions are identical to those applied in energy equa-

phredictdthe critical exponents forhthe divergenceklaws of the; o, (1) (cf. Sec. I). The values of the physical parameters
thermodynamic properties. In the present work we use ; . : ; ! .
more realistc cubic EOS to describe the fluid behavior in tha'Sed M the simulations are discussed in Appendix B.

near-critical region. Hereafter, we describe the methodology

suitable for a general EOS.

A. Problem statement

The hydrodynamic description leads to the following set

of equations:

dp

a‘FpV'U:O, (20)
du B,
p—r=—Vp+uVau, (21
dt
de . . -

=V-(kVT)—pV -0+, (22

Pt

wheree is internal energy per unit mas§,=(ul,u2,u3) is
the fluid velocity at the poink= (X;,X,,Xs),

d=p

)\ OXj 9X;

&ui &U] N &ui &ui 2 (9Ui (9UJ
Oxj O IXj IX; 3 9% OX|

is the dissipation function due to the shear viscogitythe
bulk viscosity is neglected The operatod/dt is defined as

d o . _
—=— 40V,

dt at @3

The set of Eqs(20)—(22) is closed by adding EOSY).

B. ¢, formulation
In the DNS, energy equatiof22) is rewritten in terms of

C. Acoustic filtering

Heat transfer in supercritical fluid involves three charac-
teristic time scalefl2,18: the acoustic time scale defined by
ta=L/cy (wherecg is the sound velocity and is the cell
size, the diffusion time scalép=L2%/D (D being the ther-
mal diffusivity) and the Piston effect time scale defined by
tpe=L2/[D(cy/c,—1)%], with t,<tpe<tp. The present
study is mainly concerned with time of the same order as the
Piston effect time scale so that a fine description of the
acoustic phenomena is not needed. This suggests that one
can filter out the acoustic motions of the set of Ed$, (20),

(21), and(25) and retain only their integrated effects without
altering the physics of our problem. The removal of the
acoustic motions is achieved by applying the acoustic filter-
ing method 19], which is broadly used in the computation of
the low Mach number compressible Navier-Stokes equations
because it avoids numerical instabilities when time steps,
At>t,, are used in the simulations. The following presents
the main points of the acoustic filtering method.

The equation of momentum is first rewritten by choosing
the sound velocityc, as the reference velocity scale and
L/ug as the reference time scdleereu is the characteristic
velocity of large scale fluid motions, in our casg
=L/tpg). Using this time and velocity scale the Mach num-
ber Ma=ugy/c, appears in the nondimensional momentum
equation as follows:

au S Ma'p.. 1 _..
JR— -1 . = — ¢ _—y?
= +Ma “(u V)u} >——Vp+ ReV u,

p

0Pc

(26)

where Re=p.ugL/u is the Reynolds number, and the den-
sity and pressure are nondimensionalized by critical density

temperatureTl. This is achieved by expressing the internal p. and critical pressurp. taken as the reference values. For
energy as a function of density and temperature so that oremall Mach numbers, one can express the fluid variables as

can make use of the well-known relation

series of Ma,
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u=Ma[u@+Ma2u®+o(Mad)], (27)

p=p®+Ma?p®+o(Ma?). (29

While U in the left-hand sidélhs) of Eq. (27) is nondimen-

PHYSICAL REVIEW B57, 061202 (2003

Ay (ri,60;,Tj)=0,

(34)
AZ(ri !0i ,p)zo

instead of one Eq(4) for each volume elementand time

sionalized withc,, the term in the square brackets definesSt€p.

the velocity nondimensionalized with,. This explains the

The whole numerical procedure consists in solving by the

factor Ma in Eq.(27). The density and temperature are ex- Newton-Raphson method, at each time step, a set of equa-

panded likep in Eq.(28). By substituting serie€7) and(28)
into Eq. (26) and neglecting the terms of ordé(Ma), one
obtainsVp(®=0, which means thap® depends on time
only. By retainingO(Ma) terms in Eqs(20), (25), and(26)
and O(1) terms in EOS(4), one obtains the finaldimen-
siona) form for the governing equations

dp©® - -
= _— ,0)y. ;)
at p VUt (29)
du©® -
p(O)T = —VpW+ 125, (30)
dT© p\ - o o
(0)(0) = _70) = .u©® . (0)
p Ve’ — T (&T>qu +V - (kVT©),
(3D
A(p®,p@,TO) =0, (32

where @./c3p.)ptt) is replaced byp® for the sake of com-

tions that includes Eqd934), written for each volume ele-
ment and Eq(33). This makes a system of\+ 1 equations
to resolve N being the total number of the volume elements.
The local temperaturg; is given by the resolution of Egs.
(29)—(31) at each iteration of theiIMPLER algorithm for each
time step, as described in Appendix D. For each valuthe
2N+1 (r;,6;,p) variables are computed via systéB¥).

IV. RESULTS AND DISCUSSION

A brief analysis comparing the, andc, formulations(1)
and (31) of the energy equation allows us to gain more in-
sight into the relation between the two approaches. Formally,
Egs.(1) and(31) become equivalent if the advection term
(u-V)T (35
is added to |Ihs of Eq(l). However, the equivalence of the
two forms under which the pressure work appdaee sec-
ond term of the lhs of Eqgl) and(31)] is not trivial and
deserves to be detailed. At the early stage of the heating (
<tpg) the velocity at the front of the cold boundary layer

pactness. The pressure teptt) has to be interpreted as the
dynamic pressure that makes the velocity field satisfy th
continuity equation(29). This term reflects the contribution
of the acoustic waves averaged over several wave periods
the total pressure field. One notes that the velocity staie
not present any more in EqR9)—(32), which was the main
purpose of the acoustic filtering.

being very small, the velocity can be assumed to decrease

EI’inearly in the bulk cell agiu/ 9x=— U, /L, Whereuy,a, is

E}e maximum velocity located at the front of the hot bound-
y layer andx the distance from the hot wall to the cold

wall. The rate of temperature increase due to the pressure

contribution in Eq.(31) can thus be written as follows:

The assessment g% requires one more equation to T (op) - - T [P\ Unax
close the set of Eq$29)—(32). This additional equation ex- — o \aT ‘U= b (36)
presses the mass conservation: PE p ] p
1 By using the expressiofi2]
— f pOdv=(p), (33)
vJv 1 (aT) 5Q 37
Unax>F| 5~ A sr
where(p) is a known constant. Tidp pAat

In the following, the superscript (0) is dropped to con-

form to the notation of Sec. IL. and Eqgs(18) and(19) one concludes that terng86) and(6)

are equivalent near the critical point, whexg>c, . One can
note that in the hydrodynamic approach, the pressure work is
directly related to the mass transfer from the hot boundary
For the time integration, the first-order Euler scheme idayer to the bulk fluid via the gradient velocity. It is then very
used. Equations(29—(31) are solved by the iterative important to asses properly the effect of the velocity field in
SIMPLER algorithm and by applying the finite volume method order to compare the fast calculation and hydrodynamic
(FVM, see Appendix D on each grid cell of the 1D cell. methods. The above analysis has shown that the expressions
Near the walls the mesh is refined to properly resolve thef the pressure work is equivalent for both methods. Hence,
very thin thermal boundary layers. the remaining potential interaction between the velocity and
In the present work the thermodynamic variables are deenergy fields can manifest itself only through the advection
termined using the parametric EQ&. This uses two param- term (35). This term is only relevant when, at the same spot

D. Numerical procedure

etersr and 0, both depend on temperatufeand densityp.
Therefore, one needs to solve two equations

of the fluid, both the fluid velocity and the temperature gra-
dient are large. At the small times<tpg,
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the temperature gradients are confined very near the wal 14
where the velocity remains small8]. Later on, the velocity
maximum shifts to the center of the cell where the tempera- 12
ture gradient is small. At very large timesrtp, the Piston
effect is not efficient and the velocity tends to zero. We thus _ 10
do not expect a strong influence of the advection effects o !
the temperature field. This will be confirmed by the results =_ 8 B
presented below. Note that the advection term cannot be nety
glected when the flux distribution over the heater surface is™~ ¢
highly inhomogeneous. Hot jef26] can be generated in this AN
case. LN

The calculations have been performed for two fluids,CO
and Sk, confined in a cell of length. =5 mm. The initial
temperature 1 K and 5 K above the critical point have been
considered for CQ The computations related to SEon- e
cern only the initial temperatarl K above the critical point. 0 1 P 3 4 5
The cell boundary situated at=0 has been submitted to the
constant heat fluxy,=2 W/n? (for To=T.+1 K) andq;, X (mm)
=9.5 W/n? (for To=T.+5 K) and the opposite boundary
has been maintained at the constant temperafijxe=L)
=T.

The time evolution of the temperature profiles and the
temperature at the cell cent€genie=T(X=L/2) as well as
the heat fluxqy,=—Kk[dT(x=L)/9x] are compared and %

(%]
-
(3]

analyzed. In the case of GQthe time evolution covers not 3l g

only the Piston effect time scatee but also the large diffu- = [ "~

sion time scale. 'y §
The set of Figs. 1-3 exhibit a very good qualitative agree- s 2 EN

ment between the DNS and the fast calculation results. The
thin boundary layers and the homogeneous enhancement ¢ I
the temperature in the center cell are very well predicted. 1
The quantitative comparison sets out two behaviors. On one '
hand, the fluxq,,; appears to fit very well with the DNS over
the full time evolution, at the time scatgg as well as at the
time scald, see Figs. ) and 3b). On the other hand, the
temperature at the cell cent®gq e, tends to be lower than
the DNS data. This discrepancy increases with time and is ) )
larger when the temperature is closer to the critical tempera- G- 1- (Color onling Comparison of two approaches for 3t
ture [see Fig. Zo) and Fig. 3b)]. Both behaviors can be 1 KaboveTc. (reduced temperature 3<110°?), ¢, =2 W/n? and
explained by considering how the thermal conductivitis (p)=pc. Solid curves are the D_NS re;ul_ts and the dotted curves are
. . . ; the new method result$a) Spatial variation of the temperature at
estlmat_ed in each method. In the hydrodynar_mc appréash different times.(b) Time evolution of the temperature at the cell
determined locally, whereas the fast calculation uses the SPQanter and of the flux at the exit of the cell. The valuetgf
tial average value ok. Thus, keeping in mind that the ther- _ 7 3 < obtained with our EOS is shown by an arrow.
mal conductivity diverges when approaching the critical
point, the increment in temperature near the heating surfa e (T~ T
tends to be smaller in the new method than in the D)bEe Cﬁrowdes 9(M=aTiot.
Fig. 2@]. At the opposite surface the temperature is fixed
the initial temperature and is closest to the bulk temperatur
. : L : As a further remark, we note that for 1D E@\1) could
so that the effect of averagings less influent in this region. . : .
One can note that the thermal diffusivity can be computecrave been s;)lveﬁ analytlc;alrlly by senfes gxpan3|or1|: Nev%rt.he—
locally in the fast calculation method by applying the Kirch- ess, we prefer the use of the BEM for its generality and its

Y - . possible extension to higher dimensions. We note that in 2D
?g)gf E;tz;t_ltﬁck)&c;gtze dependent variale defined by Eq. and 3D the BEM remains advantageous in resolving linear-
=J¢ )

o ] — ized problems when compared with other numerical meth-
A physical interpretation of the temperatifewhich was s, Its success is based on several factors. One of them is its
formally introduced in Sec. Il, can now be given. Indeed,nymerical stability: the numerical solution of the integral
since in the fluid bulk(i.e., around the center of the dell equations is much more stable than that of the differential
dT/9x=0 at t<tpg, according to Eq.(1) we have equations and allows the use of larger time steps. Another
dTcenter t=0(T). As near the critical point,>c,, Eq.(6)  advantage consists in the possibility of determining analyti-

1(s)

Finally, one can conclude thak

a*Tcemer- In other words,T can be considered as the bulk
iemperature.
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FIG. 2. (Color online Comparison of the two approaches for ~ FIG. 3. (Color onling Comparison of two approaches for O
CO, at 1 K above T, (reduced temperature 33073), q, at 5 K above the critical temperatueeduced temperature 1.6
=2 W/n? and(p)=p.. Solid curves are the DNS results and the X10 %), 0in=9.5 W/nf and(p)=p. Solid curves are the DNS
dotted curves are the new method resulisSpatial variation of the results and the dotted curves are the new method results. According
temperature at different timegb) Time evolution of the tempera- 10 our EOStpe=25.67 s.(a) Spatial variation of the temperature at
ture at the cell center and of the flux at the exit of the cell. The valuedifferent times.(b) Time evolution of the temperature at the cell
of tpe=3.45 s obtained with our EOS is shown by an arrow in thecenter and of the flux at the exit of the cell.
inset that presents the short-time evolution.

dependently of the velocity field. If so, the transfer of mo-
- mentum does not need to be considered, allowing a large
cally the BEM coefficients, EQsA6) and(A7). For 2D con- o4y ,ction in computational time. As an example, ingcalculag-
figurations, the diagonal coefficienGrr and Hge (Which 0o carried out for C@and Sk, the present thermody-
have the largest absolute value and thus are the most rglymic method within minutes provided the complete evolu-
evanj can be calculated analytically. The semianalytical in-tion of the heat transfer process, while the direct numerical
tegration can be used for the remaining coeffici¢@®23.  simulation of the full hydrodynamic equations required

weeks of CPU time.

V. CONCLUSIONS Compared to previous thermodynamic meth¢dt the
fast calculation method presented here does not require the
In this work we propose a thermodynamic method forevaluation of the variables at each cell of the computation

describing the heat transfer in supercritical fluids in absencdomain. This fact ensures a much better performance. More-
of gravity effects. The method has been compared with thever, the proposed method offers the possibility to explicitly
solution of the full hydrodynamic equations, showing an ex-include the thermal behavior of the material vessel contain-
cellent agreement. In general, a thermodynamic approacing the fluid by taking into account the heat conduction along
leans on the possibility of expressing the pressure work inthe solid walls, see Ref4].
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to analyze the validity of the method proposed here. The %
accuracy of the latter approach is explained by the fact that 23
the advection of energy remains negligible.

For the sake of completeness, we have also presented a L, 0G(X=Xt =)
detailed description of the hydrodynamic approach. While it YLt ox’
has been used for about a decade, some parts of its descrip- x'=0
tion for a general equation of state are either dispersed over (A4)

many literature sources or not published at all in the acces- ) )
sible literature. written for x=0,L. A variety of numerical methods can be

Concerning the future development of the present re@pplied to solve EqgA4). The simplest way is to present the
search, we plan to extend the fast calculation method to twohtegral over (@) as a sum of the integrals ovet(4,t),
and three-dimensional problems. Finally, we intend to usd =1, ... F with t,=0 andtz=t and assume a constant
this method to investigate the heat transfer in two-phase fluvalue ¢;=#(t;) and = di(t;)/dx over each of these in-
ids. tervals. EquationsA4) will reduce then to the set ofR2,

(tFm is the maximum desired calculation tinknear equa-
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APPENDIX A: BEM FOR THE DIFFUSION EQUATION
for 4F, variablesy;, ¢;(0.L), 2F,, of them being defined
by the boundary conditions. The coefficients in these equa-
tions can be calculated analytically:

In this Appendix we use the traditional notation, so tbat
andt correspond tdD4 and 7 of Eq. (12). It can be shown
[21] that the linear diffusion problem

al/’_ 2 (3|:f(X):DJ‘tf (.?J(X,tlz_t,)dt,:m
E—DV U, tr_q 2
2 _
R (A1) expl—u) X2I4AD (tg—t;)
t=0=0, X | erfo( u) ———— (A6)
Juar
with the constant thermal diffusion coefficiebtis equiva- X214D(te—t; )
lent to the boundary integral equation
and
t Iy (X' ,t") tr aG(X,tg—t’
’ 7_ 7! t+_¢t! s LF ) ’
Dfodt fA G(X—X",t—t')——— HFf(X):_DJ’ _dt
ti g X
o O G(X=X =) 1 sian(x X214D (te —ty)
— (X' 1) doA=S (X 0). =— g;( )erfc( Ju) . (A7)
A2) X2/AD (tg—t;_4)
where

The integration is performed over the surfakef the fluid
volumev, X e A. The outward unit normal té is n. Green’s
function G for the infinite space for the equation adjoint to
Eqg. (Al) reads

erfo(x) = fmexp( —u?)du,

is the complementary error function and

1, x>0,
1, x<O0.

- _ |>?|2>
_ d/ _
G(x,t)=(4mDt) 2exp( Tk (A3)

sign(x)=‘
whered is the spatial dimensionality of the problefl).

Only the 1D case with the space variable (OL) is  One needs to mention that the case0 is specialHg:(0)
considered below, the 2D counterpart being described else=0 for all f andF and
where[22,23. Ford=1, A degenerates into two points, and
Eq. (A2) reduces to two equations Gr(0)= Do/ m(Ntg—ts_1— Vtg—tg).
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The set of linear equation@A\5) can be solved by any is made to avoid pressure oscillations in the computations

appropriate method, e.g., by the Gauss elimination. [11]. For the time discretization, the first-order Euler scheme
is used. For the sake of simplicity and clarity we present the
APPENDIX B: THE ELUID PROPERTIES finite volume method for the 1D generalized transport equa-

o tion for a variableY (whereY can be substituted by eithar
The thermal conductivitk is deduced from the thermal o T)

diffusivity
D=D (T_TC)¢1+D (T_T°
1 TC 2 Tc

P2

(D1)

dpY dpuY 9 aY
—+ =—|T—|+S,
(B1) ot X ax\  aIx

- » ) wherel’ denotes the generalized diffusion coefficient &d
and the constant pressure specific heat at critical depsity  the generalized source tervolume forces Integrated over
k=DpcCpl,.. The values of the coefficients for GQare  thejth cell of the lengthdx, Eq.(D1) takes the form
D,=5.89184<10"8 m?/s, D,=7.98068 10 ' m?/s, ¢;

=0.67, andp,=1.24. The coefficients of the values for SF ppYp—pRYR
are D,=6.457X10 7 m?/s, D,=0, ¢,=0.877, and e, At AXFJemJy=SpAX, (D2)
=0. The specific heat at constant pressure is calculated by
using the thermodynamic relationship where the superscrigt denotes the value on the previous
) time step, the subscrif® represents the center of the cell,
comc 4T a_p) (B2) and the subsc_:ripte andw represent its “east” and “west”
P aT pXT' faces respectively. The calculation of the flux

The isothermal compressibility coefficient; and the spe-

cific heat at constant volume are given by the restricted cubic
model[8]. For the reference hydrodynamic DNS we used a
constantc, value calculated for the initial value of tempera- on the faces requires the knowledgeYadndp at thecenters

ture and density. We used a constant value for the viscosit9f two neighboring “East” and “West” cells denoted by the
w: 3.74<10°° Pas for Sg and 3.45¢10 ° Pas for CQ. capital letters E and W. Their values at the faces can be
found by linear interpolation between their values at the cen-
APPENDIX C ters, .9.Y= 0_.5(YP+ Y_E) if the nodes are equidistant.
The continuity equation integrated on the control volume
According to the integral theorem about the mean valuds given by

[24], there is always a point,ev So that

J=puY F&Y D3
=pu X (D3)

PP_Pg
At

oL . o Ax+F,—F,=0 (D4)
f Y(X)Z(x)dx= Y(xm)f Z(x)dx (Cy
’ ’ with F = pu. When multiplying Eq(D4) by Y and subtract-
if the functionsY and Z are continuous. When the spatial ing the result from Eq(D2), one obtains the equation
variation of Y in v is small,(Y)~Y(xy,), and Eq.(17) stems p
from Eq. (C1) ppAX p
’ ' (Yp=Yp)+(Je— YpFe) —(Jy— YpFy) = SpAX,

At
(DY)

APPENDIX D: APPLICATION OF THE FINITE VOLUME

METHOD (FVM) AND SIMPLER ALGORITHM which can be rewritten in the following form:

According to the FVM, the calculation domain is divided
into a number of nonoverlapping control volumes so that apYp=awYwtagYe+b. (D)
there is one control volume surrounding each grid point. Thel_h idi | fli _ ith
differential equations are integrated over each control vol- gtn lagonal set of linear equa’qoﬂ%) wit respe_ct o
ume. The attractive feature of this method is that the integra\("_ IS solved by the Thomas algorithf2S]. The _stenc_|l co-
balance of mass, momentum, and energy is exactly satisfie‘atﬁ'c'ents ap, aw, and ag dep.end. on the discretization
over any control volumécalled below the cell for the sake SCheMe. Their general expression is
of brevity), and thus over the whole calculation domain. The
integral formulation is also more robust than the finite differ-
ence method for problems that present strong variations of
properties observed in a near-critical fl(iitD,20. The equa- ag=BeAemaxFe,0),
tions are resolved on a staggered grid. This means that the D (D7)
velocity is computed at the points that lie on the faces of the ap=aw+tagt ppAx/AL,
cell while the scalar variablegressure, density, and tem-
perature are computed at the center of the cell. This choice b=SpAx+ ppYPAX/AL,

ayw=B,,A,+max —F,,0),
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whereB=TI"/Ax. We use the “power law schemg11] that pir* — p

requires Ue= U+ — (D11)
e
A ol 1- 0.4F\°] . (3) Compute the pressurp™* whose equation is de-
i—max o, B; o I=ew. duced by applying the divergence operator to &fL1) and

using the continuity equatio(D4):
Set(D6) should be written and solved both for the velocity

and the temperature. While the above scheme can be directly Pw = Pe| (1)« Pw (1)« = Pe (1) PP pp ~

_ \ Oy Pw | Pel g - Bw ey Pegaye  BP BP0
applied for the temperature case, the coupling of the velocity| a,, a,/" " a, W ag' © At Petle
and the pressune® (which is defined implicitly by the con- A
tinuity equation requires a special treatment for the velocity T puly - (D12
equation as described below. L () 1)

The nondimensionalized and discretized Navier-Stokes (4.) .SOIVE Eq.(D8) with p used forp™, and thus
; Obtainingu™.
equation(30), 1 N .
(5) Compute p)" whose equation is obtained analo-
gously to Eq.(D12) from
ane=z anbunb""(pg)_p(El))"'bv (D8)

. (8 —p)
where the subscriptb denotes the neighbors of poigtcan Ue=Ue + ae '
be solved only when the pressure field is given. Unless the
correct pressure field is employed, the resulting velocity fieldt takes the form
will not satisfy the continuity equation. We use the iterative
SIMPLER algorithm[11] to couple the velocity and the pres-
sure fields. This algorithm is based on successive corrections
of the velocity field and pressure field at a given time step.
The velocity and pressure variables are decomposed as fol-

lows: (6) Calculate the velocity using Eq.(D13). Do not cor-
rect the pressurp®, p" is used to correct only the veloc-

(D13)

Pu , Pe

P_
' _Pw oy Pejay PP PP
aW ae E

—_ + ju—
ay, Pw a, At

AX_Peuéc

+ pyll (D14)

=u*+u’ g :
U= DY ity field, the pressure being computed by EQ14).
, (D9) (7) Solve the energy equation fdrusing the obtained
(1= (L 4 (1)
p p P, values.
. . . . 0) .
where the asterisk denotes the guesses and the prime deno{g SLnCdaEg:Alfj)late the density distribution anal® via Egs.

the corrections. The steps of tisevPLER algorithm are the

following tion is obtained
(1) Start with a guessed velocity field. It has to be .noted that whereas the fractional st
(2) A pseudovelocityu (without taking into account the algorithm [10] is successful in resolving Eq&29)—(32) on

(9) Return to step 2 and repeat until the converged solu-

pressure gradients first computed and is defined as the acoustic time scale, it is not the case when the acoustic
filtering method is used. Due to the different meanings of

E +b pressurgsee Sec. lll ¢in the momentum equatiofinvolv-

anbunb . (1) . . . (0) .

o (D10) ing p'*)) and in the_: energy equa_ltlc(mvolvmg p‘™)), it ap-
€ ae ' pears that only an iterative algorithm can correctly couple the

R thermodynamic field and the velocity field, ttreso algo-

whereu,, represents the neighbor velocitiessatisfies rithm leading to unstable solutions.
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