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Fast heat transfer calculations in supercritical fluids versus hydrodynamic approach
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This study investigates the heat transfer in a simple pure fluid whose temperature is slightly above its critical
temperature. We propose an efficient numerical method to predict the heat transfer in such fluids when the
gravity can be neglected. The method, based on a simplified thermodynamic approach, is compared with direct
numerical simulations of the Navier-Stokes and energy equations performed for CO2 and SF6. A realistic
equation of state is used to describe both fluids. The proposed method agrees with the full hydrodynamic
solution and provides a huge gain in computation time. The connection between the purely thermodynamic and
hydrodynamic descriptions is also discussed.
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I. INTRODUCTION

In fluids near their liquid-gas critical point, the characte
istic size of the density fluctuations becomes larger than
characteristic size of the molecular structure. Conseque
the fluid behavior is ruled by fluctuations and not by
particular molecular structure. This implies that most flu
behave similarly near the critical point~like the 3D Ising
model!. This universality makes the study of near critic
fluids very appealing. Due to their very low thermal diffusi
ity and to their very large thermal expansion and compre
ibility, the study of heat transfer in such fluids is particular
challenging. When such a fluid is confined in a heated cav
a very thin hot boundary layer develops and induces a
expansion that compresses the rest of the fluid. The resu
pressure waves spread at the sound velocity~i.e, very rap-
idly! and adiabatically compress the bulk of the fluid, whi
is therefore homogeneously heated. After several so
wave periods the pressure is already equilibrated and ca
assumed to be nearly homogeneous along the cavity. Du
the initial stage of heating, this process of energy trans
called ‘‘Piston effect’’@1,2#, is much more efficient than th
usual diffusion scenario. Indeed, if the Piston effect w
absent, the bulk of the fluid would remain at the initial tem
perature.

In the industrial domain, the Piston effect can be used
transfer heat much faster than by conduction. This fea
can be readily applied to the development of heat exchan
under microgravity conditions@3,4# where heat transfer by
natural convection is obviously not possible.

While the physical origin of the Piston effect is well un
derstood, the calculations required to represent realistic
perimental conditions are difficult because the inherent n
linear dynamical behavior of such fluids is complicated

*Email address: vnikolayev@cea.fr
†Present address: Aeronautics Department, Imperial Coll

Prince Consort Road, South Kensington, London, England, S
2BY, United Kingdom.
1063-651X/2003/67~6!/061202~11!/$20.00 67 0612
-
e

ly,

s

l

s-

y,
st
ng

d
be
ng
r,

e
-

o
re
rs

x-
-

the highly nonlinear equations of state~EOS! used to de-
scribe real near-critical fluids. Two computational a
proaches have been suggested for confined fluids in abs
of convection. In one of them, which we will refer as th
‘‘thermodynamic approach’’@5#, the Piston effect is taken
into account by a supplementary termg, introduced in the
heat conduction equation as follows:

]T

]t
5

1

rcp
“•~k¹T!1g~T!, ~1!

with

g~T!5S 12
cv

cp
D S ]T

]pD
r

]p

]t
, ~2!

whereT is the local fluid temperature,cv (cp) the specific
heat at constant volume~pressure! per unit mass,r the local
density, andk the thermal conductivity of the fluid. One ca
note that the termg(T) is only relevant near the critical poin
wherecp@cv .

The fluid motions are neglected and the pressurep, as-
sumed to be homogeneous, is only a function of timet. The
pressurep is determined from the fluid mass conservati
and computed via the nonlinear expression@5#

]p

]t
52

E
v
~]r/]T!p]T/]t dv

E
v
rxT dv

, ~3!

where xT5r21(]r/]p)T is the isothermal compressibility
andv the volume of the fluid sample. The resolution of E
~3! requires an iterative procedure for each time step. T
consists in calculating the temperaturein the whole fluid vol-
umeusing Eqs.~1! and~2! for some trial value ofp ~and thus
]p/]t) and determining the other thermodynamic parame
(r,xT , . . . ) by an EOS

L~p,r,T!50. ~4!

e,
7
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NIKOLAYEV et al. PHYSICAL REVIEW E 67, 061202 ~2003!
Subsequent computation of thevolume integrals in Eq.~3!
gives a value of]p/]t from which the pressurep is cor-
rected. The correction step is repeated until converge
This approach has been extensively used by several gr
@6,7# in one-dimensional~1D! calculation in conjunction
with the restricted cubic EOS@8# and the finite difference
numerical method. However, its extension to higher dim
sions induces a large computational effort. First, it require
sophisticated programming and, second, the computer
sources rise steeply because the thermodynamic varia
have to be evaluated at each grid point of the computatio
domain by means of the iterative procedure to solve Eq.~3!.

Teams with expertise in theoretical hydrodynamics ha
developed a rigorous hydrodynamic approach@1# in which
the Navier-Stokes and energy equations are coupled with
EOS. This set of equations has been solved analyticall
1D by asymptotic matching techniques@9# and also by direct
numerical simulation~DNS! @10# via the finite volume
method@11# both in 1D and 2D. For the sake of simplicit
the van der Waals EOS has been used in all these wo
Although this simple EOS provides satisfactory qualitat
results, accuracy can only be ensured by using a real
EOS. However, as shown in the present study, insertin
realistic EOS into the hydrodynamic equations leads t
much more difficult computational task, which involves pr
hibitively large calculation times. For instance, to reach
final steady state in one of the 1D runs carried out for
cubic EOS in the present study, one requires about
months on a 800 MHz PC.

The purpose of this paper is twofold. We first formula
an approximate method, which is both simple and rapid~e.g.,
the same calculation cited above required only 20 s!!, and
then compare it with the DNS formalism. Second, since t
work is the first one to use a realistic EOS for the DNS,
describe in detail the hydrodynamic approach for the ne
critical fluids with a general EOS. We expect that this co
plete and unified description may be useful for the scient
community, as the hydrodynamic method is dispersed o
many ~some of them not easily accessible! publications.

The paper is organized as follows. In Sec. II we descr
fast calculation method. Section III presents the hydro
namic approach. Sec. IV deals with the comparison betw
both approaches. The conclusions are given in Sec. V.

II. FAST CALCULATION METHOD

The method is based on the thermodynamic approach,
on the energy equation~1!. However, a different pressur
equation will be used instead of Eq.~3!. While the latter
equation integrates over the fluidvolume, we are looking for
a pressure equation that integrates only over theboundaries
of the fluid domain. Such an equation would accelerate
iterative procedure. However, its advantage would not
decisive without an appropriate numerical method for Eq.~1!
that should only require computation of the thermodynam
variables at the boundaries. Such a numerical metho
called Boundary Element Method~BEM! and is broadly
used in heat transfer problems. The BEM is expounded
Appendix A.
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Several simplifications have to be introduced before p
senting the formulation of the energy and pressure equat
used in the present method. As stated in the Introduction,
are mainly interested in the description of the early stage
heating, i.e., on times of the order of the Piston effect ti
scale @12#. In this regime, the thermodynamic quantitie
cp ,cv ,k, . . . are constant in the bulk of the fluid and on
vary in the very thin hot and cold boundary layers. Thus,
following assumptions can be made.

~1! The spatially varying parameters (cp , cv , k, etc.! in
Eq. ~1! can be replaced by the spatially homogeneous tim
dependent values, which will be denoted hereafter by
overbar~e.g.,c̄p). These values are calculated with the EO
using density^r& ~where the brackets indicate the spat
average! and pressurep5p(t). We note that densitŷr& is
constant as the system is closed.

This assumption is equivalent to the statement that
these quantities should be calculated using the tempera
valueT̄5T̄(t) obtained from the EOS for the pressurep and
the densitŷ r&. The quantities calculated in such a way co
respond to the overbar variables mentioned above. In g
eral, for a thermodynamic quantityX, X̄Þ^X&.

~2! During the system evolution, the thermodynam
quantities are supposed not to vary sharply in time.

~3! The initial temperatureT0 is uniform.
Assumption~3! is made for simplicity and can be relaxe

if necessary. However, the assumptions~1! and~2! are essen-
tial for this approach.

In the following section we formulate the energy an
pressure equations that govern the kinetics of the superc
cal fluid in a reduced gravity environment.

A. Energy equation

Using assumption~1! and the constancy of̂r&, one can
write

dp5~]p/]T!rdT̄ ~5!

so that term~2! reduces to

ḡ~ T̄!5S 12
c̄v

c̄p
D dT̄

dt
, ~6!

and Eq.~1! can be reduced to the equation

]c

]t
5D̄¹2c. ~7!

The thermal diffusion coefficientD̄5 k̄/^r&c̄p depends onT̄,
i.e., on timet only, and

c~xW ,t !5T~xW ,t !2T02E~ T̄! ~8!

with xW the position vector and

E~ T̄!5E
T0

T̄ S 12
c̄v

c̄p
D dT̄. ~9!
2-2
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FAST HEAT TRANSFER CALCULATIONS IN . . . PHYSICAL REVIEW E67, 061202 ~2003!
The initial condition iscu t5050 because according to a
sumption~3!,

T̄u t505T0 . ~10!

Finally, a known dependence ofD̄5Ddf (T̄), whereDd is a
dimensional constant andf is a nondimensional function, al
lows time t to be replaced by an independent variablet
defined by the equation

dt

dt
5 f ~ T̄!, ~11!

whose initial condition can be imposed astu t5050. SinceT̄
is a function of t only, this initial-value problem is fully
defined. The substitution of Eq.~11! into Eq. ~7! results in
the linear diffusion problem with the constant diffusion c
efficient Dd

]c

]t
5Dd¹2c, ~12!

cut5050.

It can be solved with the BEM as shown in Appendix A.
Usually, the ‘‘temperature step’’ boundary condition h

been applied for 1D problems. This heating process co
sponds to a fluid cell, initially at a uniform temperatur
which is submitted to a sudden increase of temperatur
one of its boundaries, while the other is kept at the init
temperature~Dirichlet boundary conditions!. This heating
condition is physically unrealistic because the initial val
for the heat flux at the heated boundary is infinite. Instead
this work we use Neumann-Dirichlet boundary conditions
heat fluxqin is imposed at one of the boundaries, while t
initial temperatureT0 is maintained at the other boundary.

B. Boundary form of the pressure equation

Let us begin by writing the linearized relationship, val
under assumption~2!:

dr5S ]r

]sD
p

ds1S ]r

]pD
s

dp, ~13!

wheres is the fluid entropy per unit mass andd stands for the
variation of the thermodynamic quantity during the time
terval dt. From the mass conservation it follows that^dr&
50, and, from the pressure homogeneity that^dp&5dp.

By averaging Eq.~13! one obtains

K S ]r

]sD
p

dsL 1K S ]r

]pD
s
L dp50. ~14!

The use of appropriate thermodynamic relationships lead
06120
e-
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dp5

K xT

cp
TS ]p

]TD
r

rdsL
K xT

cp
rcvL . ~15!

In order to use the second law of thermodynamics

^rds&5
dQ

vT̄
, ~16!

wheredQ is the total change of the amount of heat of t
fluid, one needs to separate out the averages of the f
^YZ& in Eq. ~15!. Under the assumption thatY ~or Z) does
not vary sharply over the fluid volume, the following ap
proximation holds~see Appendix C!:

^YZ&'^Y&^Z&. ~17!

Among the quantities that appear in Eq.~15!, only xT andcp
vary sharply near the critical point and could thus va
strongly across the fluid volume. However, only their rat
which remains constant near the critical point, enters
~15!. Hence, the average of this ratio as well as the remain
averages of slowly varying quantities can be separated.
using the expression for the total heat change rate

dQ

dt
5E

A
k

]T

]nW
dA, ~18!

where the right-hand side is simply the integrated heat fl
supplied to the fluid through its boundaryA ~with nW the ex-
ternal normal vector to it!, one gets to the final expression

dT̄

dt
5

1

^r&vcv
E

A
k

]T

]nW
dA. ~19!

In the fast calculation method, Eq.~19! plays the role of the
pressure equation~3!. Equation~19! is both substituted di-
rectly into Eq. ~6! and solved to get temperatureT̄, using
initial condition ~10!. The obtained value forT̄ is used to
solve Eq.~11! and to calculate all the fluid properties. No
that T̄ should not be confused withT from Eqs. ~18! and
~19!. The spatially varying fluid temperatureT has to be
calculated with Eqs.~8! and ~12!.

SubstitutingT̄ by ^T&, Eq. ~19! coincides with the result
of Onuki and Ferrell@2#, which was derived by a differen
way. Equation~19!, written in terms of̂ T&, was employed
recently @13,14# to simulate the gravitational convection i
2D by the finite difference method. However, the finite d
ference numerical method is not the most efficient for
computation of heat transfer problems.

III. HYDRODYNAMIC APPROACH

Analytical analysis as well as direct simulations were c
ried out in previous works. Bailly and Zappoli@15# have
developed a complete hydrodynamic theory of density rel
2-3
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NIKOLAYEV et al. PHYSICAL REVIEW E 67, 061202 ~2003!
ation after a temperature step at the boundary of a cell fi
with a nearly supercritical fluid in microgravity condition
In Ref. @15# they describe the different stages of the flu
relaxation towards its complete thermodynamic equilibriu
covering the acoustic, Piston effect, and heat diffusion ti
scale. The analytical approach leans on the matc
asymptotic expansions to solve the 1D Navier-Stokes eq
tions for a viscous, low-heat-diffusing, near-critical van d
Waals fluid~see Refs.@9# and@15#!. The DNS of the Navier-
Stokes equations were performed in 1D and 2D geomet
Some of them take into account gravity effects, as for
ample, the interaction of a near-critical thermal plume with
thermostated boundary@16#. Numerical results are also avai
able on thermovibrational mechanisms@17#.

To date the hydrodynamic approach has been solved
the classical, van der Waals, EOS. This EOS allows a c
siderable reduction in computational time when compare
the restricted cubic EOS. However, it does not provide
correct description of the real fluids. In particular, it fails
predict the critical exponents for the divergence laws of
thermodynamic properties. In the present work we us
more realistic cubic EOS to describe the fluid behavior in
near-critical region. Hereafter, we describe the methodol
suitable for a general EOS.

A. Problem statement

The hydrodynamic description leads to the following s
of equations:

dr

dt
1r¹W •uW 50, ~20!

r
duW

dt
52¹W p1m¹2uW , ~21!

r
de

dt
5¹W •~k¹W T!2p¹W •uW 1F, ~22!

wheree is internal energy per unit mass,uW 5(u1 ,u2 ,u3) is
the fluid velocity at the pointxW5(x1 ,x2 ,x3),

F5m(
i , j

S ]ui

]xj

]uj

]xi
1

]ui

]xj

]ui

]xj
2

2

3

]ui

]xi

]uj

]xj
D

is the dissipation function due to the shear viscositym ~the
bulk viscosity is neglected!. The operatord/dt is defined as

d

dt
5

]

]t
1uW •¹W . ~23!

The set of Eqs.~20!–~22! is closed by adding EOS~4!.

B. cv formulation

In the DNS, energy equation~22! is rewritten in terms of
temperatureT. This is achieved by expressing the intern
energy as a function of density and temperature so that
can make use of the well-known relation
06120
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dt
5

1

r2 Fp2TS ]p

]TD
r
Gdr

dt
1cv

dT

dt
. ~24!

Then, by substituting Eqs.~20! and ~22! into Eq. ~24! one
obtains

rcv

dT

dt
5¹W •~k¹W T!2TS ]p

]TD
r

¹W •uW 1F. ~25!

Note that Eq.~25! involves cv and notcp as in thermody-
namic equation~1!. The ‘‘cv formulation’’ is preferred to the
‘‘ cp formulation’’ because the much weaker near-critical
vergence ofcv ~in comparison withcp) allowscv assumed to
be constant.

The boundary conditions for the Navier-Stokes equatio
are uW 50 at the walls. The initial conditions are given b
uW (t50)50. For energy equation~25! the boundary and ini-
tial conditions are identical to those applied in energy eq
tion ~1! ~cf. Sec. II!. The values of the physical paramete
used in the simulations are discussed in Appendix B.

C. Acoustic filtering

Heat transfer in supercritical fluid involves three chara
teristic time scales@12,18#: the acoustic time scale defined b
ta5L/c0 ~wherec0 is the sound velocity andL is the cell
size!, the diffusion time scaletD5L2/D (D being the ther-
mal diffusivity! and the Piston effect time scale defined
tPE5L2/@D(cp /cv21)2#, with ta!tPE,tD . The present
study is mainly concerned with time of the same order as
Piston effect time scale so that a fine description of
acoustic phenomena is not needed. This suggests that
can filter out the acoustic motions of the set of Eqs.~4!, ~20!,
~21!, and~25! and retain only their integrated effects witho
altering the physics of our problem. The removal of t
acoustic motions is achieved by applying the acoustic filt
ing method@19#, which is broadly used in the computation o
the low Mach number compressible Navier-Stokes equati
because it avoids numerical instabilities when time ste
Dt@ta , are used in the simulations. The following prese
the main points of the acoustic filtering method.

The equation of momentum is first rewritten by choosi
the sound velocityc0 as the reference velocity scale an
L/u0 as the reference time scale~hereu0 is the characteristic
velocity of large scale fluid motions, in our caseu0
5L/tPE). Using this time and velocity scale the Mach num
ber Ma5u0 /c0 appears in the nondimensional momentu
equation as follows:

rF ]uW

]t
1Ma21~uW •¹W !uW G52

Ma21pc

c0
2rc

¹W p1
1

Re
¹2uW ,

~26!

where Re5rcu0L/m is the Reynolds number, and the de
sity and pressure are nondimensionalized by critical den
rc and critical pressurepc taken as the reference values. F
small Mach numbers, one can express the fluid variable
series of Ma,
2-4
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FAST HEAT TRANSFER CALCULATIONS IN . . . PHYSICAL REVIEW E67, 061202 ~2003!
uW 5Ma@uW (0)1Ma2uW (1)1o~Ma2!#, ~27!

p5p(0)1Ma2p(1)1o~Ma2!. ~28!

While uW in the left-hand side~lhs! of Eq. ~27! is nondimen-
sionalized withc0, the term in the square brackets defin
the velocity nondimensionalized withu0. This explains the
factor Ma in Eq.~27!. The density and temperature are e
panded likep in Eq. ~28!. By substituting series~27! and~28!
into Eq. ~26! and neglecting the terms of orderO(Ma), one
obtains¹W p(0)50, which means thatp(0) depends on time
only. By retainingO(Ma) terms in Eqs.~20!, ~25!, and~26!
and O(1) terms in EOS~4!, one obtains the final~dimen-
sional! form for the governing equations

dr (0)

dt
52r (0)¹W •uW (0), ~29!

r (0)
duW (0)

dt
52¹W p(1)1m¹2uW (0), ~30!

r (0)cv
(0) dT(0)

dt
52T(0)S ]p

]TD
r

¹W •uW (0)1¹W •~k¹W T(0)!,

~31!

L~p(0),r (0),T(0)!50, ~32!

where (pc /c0
2rc)p(1) is replaced byp(1) for the sake of com-

pactness. The pressure termp(1) has to be interpreted as th
dynamic pressure that makes the velocity field satisfy
continuity equation~29!. This term reflects the contributio
of the acoustic waves averaged over several wave period
the total pressure field. One notes that the velocity scalec0 is
not present any more in Eqs.~29!–~32!, which was the main
purpose of the acoustic filtering.

The assessment ofp(0) requires one more equation t
close the set of Eqs.~29!–~32!. This additional equation ex
presses the mass conservation:

1

vEv
r (0)dv5^r&, ~33!

where^r& is a known constant.
In the following, the superscript (0) is dropped to co

form to the notation of Sec. II.

D. Numerical procedure

For the time integration, the first-order Euler scheme
used. Equations~29!–~31! are solved by the iterative
SIMPLER algorithm and by applying the finite volume metho
~FVM, see Appendix D! on each grid cell of the 1D cell
Near the walls the mesh is refined to properly resolve
very thin thermal boundary layers.

In the present work the thermodynamic variables are
termined using the parametric EOS@8#. This uses two param
etersr andu, both depend on temperatureT and densityr.
Therefore, one needs to solve two equations
06120
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L1~r i ,u i ,Ti !50,
~34!

L2~r i ,u i ,p!50

instead of one Eq.~4! for each volume elementi and time
step.

The whole numerical procedure consists in solving by
Newton-Raphson method, at each time step, a set of e
tions that includes Eqs.~34!, written for each volume ele-
ment and Eq.~33!. This makes a system of 2N11 equations
to resolve,N being the total number of the volume elemen
The local temperatureTi is given by the resolution of Eqs
~29!–~31! at each iteration of theSIMPLER algorithm for each
time step, as described in Appendix D. For each valueTi the
2N11 (r i ,u i ,p) variables are computed via system~34!.

IV. RESULTS AND DISCUSSION

A brief analysis comparing thecp andcv formulations~1!
and ~31! of the energy equation allows us to gain more
sight into the relation between the two approaches. Forma
Eqs.~1! and ~31! become equivalent if the advection term

~uW •¹W !T ~35!

is added to lhs of Eq.~1!. However, the equivalence of th
two forms under which the pressure work appears@see sec-
ond term of the lhs of Eqs.~1! and ~31!# is not trivial and
deserves to be detailed. At the early stage of the heatint
,tPE) the velocity at the front of the cold boundary lay
being very small, the velocity can be assumed to decre
linearly in the bulk cell as]u/]x.2umax/L, whereumax is
the maximum velocity located at the front of the hot boun
ary layer andx the distance from the hot wall to the col
wall. The rate of temperature increase due to the pres
contribution in Eq.~31! can thus be written as follows:

2
T

rcv
S ]p

]TD
r

¹W •uW 5
T

rcv
S ]p

]TD
r

umax

L
. ~36!

By using the expression@12#

umax5
1

T S ]T

]pD
r

dQ

Adt
~37!

and Eqs.~18! and~19! one concludes that terms~36! and~6!
are equivalent near the critical point, wherecp@cv . One can
note that in the hydrodynamic approach, the pressure wo
directly related to the mass transfer from the hot bound
layer to the bulk fluid via the gradient velocity. It is then ve
important to asses properly the effect of the velocity field
order to compare the fast calculation and hydrodynam
methods. The above analysis has shown that the expres
of the pressure work is equivalent for both methods. Hen
the remaining potential interaction between the velocity a
energy fields can manifest itself only through the advect
term ~35!. This term is only relevant when, at the same sp
of the fluid, both the fluid velocity and the temperature g
dient are large. At the small times,t,tPE ,
2-5



w

ra

u
o
lt
n

e
s

O

en

.
e

y

th

t

ee
Th
nt
ed
on
r

d
er

sp
r-
a

fa

a
tu
.
te
h-

d
l

lk

the-
its
2D
ar-
th-
is its
al
tial
ther
yti-

are
t
ll

NIKOLAYEV et al. PHYSICAL REVIEW E 67, 061202 ~2003!
the temperature gradients are confined very near the
where the velocity remains small@18#. Later on, the velocity
maximum shifts to the center of the cell where the tempe
ture gradient is small. At very large times,t.tD , the Piston
effect is not efficient and the velocity tends to zero. We th
do not expect a strong influence of the advection effects
the temperature field. This will be confirmed by the resu
presented below. Note that the advection term cannot be
glected when the flux distribution over the heater surfac
highly inhomogeneous. Hot jets@26# can be generated in thi
case.

The calculations have been performed for two fluids, C2

and SF6, confined in a cell of lengthL55 mm. The initial
temperatures 1 K and 5 K above the critical point have be
considered for CO2. The computations related to SF6 con-
cern only the initial temperature 1 K above the critical point
The cell boundary situated atx50 has been submitted to th
constant heat fluxqin52 W/m2 ~for T05Tc11 K) andqin
59.5 W/m2 ~for T05Tc15 K) and the opposite boundar
has been maintained at the constant temperatureT(x5L)
5T0.

The time evolution of the temperature profiles and
temperature at the cell centerTcenter5T(x5L/2) as well as
the heat fluxqout52k@]T(x5L)/]x# are compared and
analyzed. In the case of CO2, the time evolution covers no
only the Piston effect time scaletPE but also the large diffu-
sion time scale.

The set of Figs. 1–3 exhibit a very good qualitative agr
ment between the DNS and the fast calculation results.
thin boundary layers and the homogeneous enhanceme
the temperature in the center cell are very well predict
The quantitative comparison sets out two behaviors. On
hand, the fluxqout appears to fit very well with the DNS ove
the full time evolution, at the time scaletPE as well as at the
time scaletD , see Figs. 2~b! and 3~b!. On the other hand, the
temperature at the cell centerTcenter tends to be lower than
the DNS data. This discrepancy increases with time an
larger when the temperature is closer to the critical temp
ture @see Fig. 2~b! and Fig. 3~b!#. Both behaviors can be
explained by considering how the thermal conductivityk is
estimated in each method. In the hydrodynamic approachk is
determined locally, whereas the fast calculation uses the
tial average value ofk. Thus, keeping in mind that the the
mal conductivity diverges when approaching the critic
point, the increment in temperature near the heating sur
tends to be smaller in the new method than in the DNS@see
Fig. 2~a!#. At the opposite surface the temperature is fixed
the initial temperature and is closest to the bulk tempera
so that the effect of averagingk is less influent in this region
One can note that the thermal diffusivity can be compu
locally in the fast calculation method by applying the Kirc
hoff substitution of the dependent variablec @defined by Eq.
~8!# by f5*0

ck(c)dc.

A physical interpretation of the temperatureT̄, which was
formally introduced in Sec. II, can now be given. Indee
since in the fluid bulk~i.e., around the center of the cel!
]T/]x50 at t,tPE , according to Eq. ~1! we have
]Tcenter/]t5ḡ(T̄). As near the critical pointcp@cv , Eq.~6!
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provides ḡ(T̄)']T̄/]t. Finally, one can conclude thatT̄
'Tcenter. In other words,T̄ can be considered as the bu
temperature.

As a further remark, we note that for 1D Eq.~A1! could
have been solved analytically by series expansion. Never
less, we prefer the use of the BEM for its generality and
possible extension to higher dimensions. We note that in
and 3D the BEM remains advantageous in resolving line
ized problems when compared with other numerical me
ods. Its success is based on several factors. One of them
numerical stability: the numerical solution of the integr
equations is much more stable than that of the differen
equations and allows the use of larger time steps. Ano
advantage consists in the possibility of determining anal

FIG. 1. ~Color online! Comparison of two approaches for SF6 at
1 K aboveTc ~reduced temperature 3.131023), qin52 W/m2 and
^r&5rc . Solid curves are the DNS results and the dotted curves
the new method results.~a! Spatial variation of the temperature a
different times.~b! Time evolution of the temperature at the ce
center and of the flux at the exit of the cell. The value oftPE

57.73 s obtained with our EOS is shown by an arrow.
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FAST HEAT TRANSFER CALCULATIONS IN . . . PHYSICAL REVIEW E67, 061202 ~2003!
cally the BEM coefficients, Eqs.~A6! and~A7!. For 2D con-
figurations, the diagonal coefficientsGFF and HFF ~which
have the largest absolute value and thus are the most
evant! can be calculated analytically. The semianalytical
tegration can be used for the remaining coefficients@22,23#.

V. CONCLUSIONS

In this work we propose a thermodynamic method
describing the heat transfer in supercritical fluids in abse
of gravity effects. The method has been compared with
solution of the full hydrodynamic equations, showing an e
cellent agreement. In general, a thermodynamic appro
leans on the possibility of expressing the pressure work

FIG. 2. ~Color online! Comparison of the two approaches f
CO2 at 1 K above Tc ~reduced temperature 3.331023), qin

52 W/m2 and ^r&5rc . Solid curves are the DNS results and t
dotted curves are the new method results.~a! Spatial variation of the
temperature at different times.~b! Time evolution of the tempera
ture at the cell center and of the flux at the exit of the cell. The va
of tPE53.45 s obtained with our EOS is shown by an arrow in t
inset that presents the short-time evolution.
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dependently of the velocity field. If so, the transfer of m
mentum does not need to be considered, allowing a la
reduction in computational time. As an example, in calcu
tions carried out for CO2 and SF6, the present thermody
namic method within minutes provided the complete evo
tion of the heat transfer process, while the direct numer
simulation of the full hydrodynamic equations require
weeks of CPU time.

Compared to previous thermodynamic methods@5#, the
fast calculation method presented here does not require
evaluation of the variables at each cell of the computat
domain. This fact ensures a much better performance. M
over, the proposed method offers the possibility to explici
include the thermal behavior of the material vessel conta
ing the fluid by taking into account the heat conduction alo
the solid walls, see Ref.@4#.

e

FIG. 3. ~Color online! Comparison of two approaches for CO2

at 5 K above the critical temperature~reduced temperature 1.
31022), qin59.5 W/m2 and ^r&5rc . Solid curves are the DNS
results and the dotted curves are the new method results. Accor
to our EOS,tPE525.67 s.~a! Spatial variation of the temperature a
different times.~b! Time evolution of the temperature at the ce
center and of the flux at the exit of the cell.
2-7
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NIKOLAYEV et al. PHYSICAL REVIEW E 67, 061202 ~2003!
The direct numerical simulation of the flow has been us
to analyze the validity of the method proposed here. T
accuracy of the latter approach is explained by the fact
the advection of energy remains negligible.

For the sake of completeness, we have also present
detailed description of the hydrodynamic approach. Whil
has been used for about a decade, some parts of its des
tion for a general equation of state are either dispersed
many literature sources or not published at all in the acc
sible literature.

Concerning the future development of the present
search, we plan to extend the fast calculation method to t
and three-dimensional problems. Finally, we intend to
this method to investigate the heat transfer in two-phase
ids.
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APPENDIX A: BEM FOR THE DIFFUSION EQUATION

In this Appendix we use the traditional notation, so thatD
and t correspond toDd and t of Eq. ~12!. It can be shown
@21# that the linear diffusion problem

]c

]t
5D¹2c,

~A1!
cu t5050,

with the constant thermal diffusion coefficientD is equiva-
lent to the boundary integral equation

DE
0

t

dt8E
A
FG~xW2xW8,t2t8!

]x8c~xW8,t8!

]nW

2c~xW8,t8)
]x8G~xW2xW8,t2t8!

]nW
dx8A5

1

2
c~xW ,t !.

~A2!

The integration is performed over the surfaceA of the fluid
volumev, xWPA. The outward unit normal toA is nW . Green’s
function G for the infinite space for the equation adjoint
Eq. ~A1! reads

G~xW ,t !5~4pDt !2d/2 expS 2
uxW u2

4Dt
D , ~A3!

whered is the spatial dimensionality of the problem~A1!.
Only the 1D case with the space variablexP(0,L) is

considered below, the 2D counterpart being described e
where@22,23#. For d51, A degenerates into two points, an
Eq. ~A2! reduces to two equations
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2DE
0

t

dt8FG~x2x8,t2t8!
]c

]x8

2c~x8,t8!
]G~x2x8,t2t8!

]x8
GU

x850

x85L

5c~x,t !

~A4!

written for x50,L. A variety of numerical methods can b
applied to solve Eqs.~A4!. The simplest way is to present th
integral over (0,t) as a sum of the integrals over (t f 21 ,t f),
f 51, . . . ,F with t050 and tF5t and assume a constan
value c f5c(t f) and c f85]c(t f)/]x over each of these in
tervals. Equations~A4! will reduce then to the set of 2Fm
(tFm

is the maximum desired calculation time! linear equa-
tions

(
f 51

F

@c f~0!HF f~x!2c f~L !HF f~x2L !2c f8~0!GF f~x!

1c f8~L !GF f~x2L !#5cFi /2,

x50,L;F51, . . . ,Fm ~A5!

for 4Fm variablesc f , c f8(0,L), 2Fm of them being defined
by the boundary conditions. The coefficients in these eq
tions can be calculated analytically:

GF f~x!5DE
t f 21

t f
G~x,tF2t8!dt85

uxu
2

3Ferfc~Au!2
exp~2u!

Aup
G

x2/4D(tF2t f 21)

x2/4D~ tF2t f !

~A6!

and

HF f~x!52DE
t f 21

t f ]G~x,tF2t8!

]x
dt8

52
sign~x!

2
erfc~Au!U

x2/4D(tF2t f 21)

x2/4D(tF2t f )

, ~A7!

where

erfc~x!5E
x

`

exp~2u2!du,

is the complementary error function and

sign~x!5H 1, x.0,

21, x,0.

One needs to mention that the casex50 is special:HF f(0)
50 for all f andF and

GF f~0!5AD0 /p~AtF2t f 212AtF2t f !.
2-8
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The set of linear equations~A5! can be solved by any
appropriate method, e.g., by the Gauss elimination.

APPENDIX B: THE FLUID PROPERTIES

The thermal conductivityk is deduced from the therma
diffusivity

D5D1S T2Tc

Tc
D w1

1D2S T2Tc

Tc
D w2

~B1!

and the constant pressure specific heat at critical densityrc ,
k5Drccpurc

. The values of the coefficients for CO2 are

D155.891 8431028 m2/s, D257.9806831027 m2/s, w1
50.67, andw251.24. The coefficients of the values for SF6
are D156.45731027 m2/s, D250, w150.877, and w2
50. The specific heat at constant pressure is calculate
using the thermodynamic relationship

cp5cv1TS ]p

]TD
r

2

xT. ~B2!

The isothermal compressibility coefficientxT and the spe-
cific heat at constant volume are given by the restricted cu
model @8#. For the reference hydrodynamic DNS we used
constantcv value calculated for the initial value of temper
ture and density. We used a constant value for the visco
m: 3.7431025 Pa s for SF6 and 3.4531025 Pa s for CO2.

APPENDIX C

According to the integral theorem about the mean va
@24#, there is always a pointxWmPv so that

E
v
Y~xW !Z~xW !dxW5Y~xWm!E

v
Z~xW !dxW ~C1!

if the functionsY and Z are continuous. When the spati
variation ofY in v is small,^Y&'Y(xWm), and Eq.~17! stems
from Eq. ~C1!.

APPENDIX D: APPLICATION OF THE FINITE VOLUME
METHOD „FVM … AND SIMPLER ALGORITHM

According to the FVM, the calculation domain is divide
into a number of nonoverlapping control volumes so t
there is one control volume surrounding each grid point. T
differential equations are integrated over each control v
ume. The attractive feature of this method is that the integ
balance of mass, momentum, and energy is exactly satis
over any control volume~called below the cell for the sak
of brevity!, and thus over the whole calculation domain. T
integral formulation is also more robust than the finite diffe
ence method for problems that present strong variation
properties observed in a near-critical fluid@10,20#. The equa-
tions are resolved on a staggered grid. This means tha
velocity is computed at the points that lie on the faces of
cell while the scalar variables~pressure, density, and tem
perature! are computed at the center of the cell. This cho
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is made to avoid pressure oscillations in the computati
@11#. For the time discretization, the first-order Euler sche
is used. For the sake of simplicity and clarity we present
finite volume method for the 1D generalized transport eq
tion for a variableY ~whereY can be substituted by eitheru
or T)

]rY

]t
1

]ruY

]x
5

]

]x S G
]Y

]x D1S, ~D1!

whereG denotes the generalized diffusion coefficient andS
the generalized source term~volume forces!. Integrated over
the i th cell of the lengthdx, Eq. ~D1! takes the form

rPYP2rP
pYP

p

Dt
Dx1Je2Jw5SPDx, ~D2!

where the superscriptp denotes the value on the previou
time step, the subscriptP represents the center of the ce
and the subscriptse and w represent its ‘‘east’’ and ‘‘west’’
faces respectively. The calculation of the flux

J5ruY2G
]Y

]x
~D3!

on the faces requires the knowledge ofY andr at thecenters
of two neighboring ‘‘East’’ and ‘‘West’’ cells denoted by th
capital letters E and W. Their values at the faces can
found by linear interpolation between their values at the c
ters, e.g.,Ye50.5(YP1YE) if the nodes are equidistant.

The continuity equation integrated on the control volum
is given by

rP2rP
p

Dt
Dx1Fe2Fw50 ~D4!

with F5ru. When multiplying Eq.~D4! by YP and subtract-
ing the result from Eq.~D2!, one obtains the equation

rP
pDx

Dt
~YP2YP

p !1~Je2YPFe!2~Jw2YPFw!5SPDx,

~D5!

which can be rewritten in the following form:

aPYP5aWYW1aEYE1b. ~D6!

The tridiagonal set of linear equations~D6! with respect to
YP is solved by the Thomas algorithm@25#. The stencil co-
efficients aP , aW , and aE depend on the discretizatio
scheme. Their general expression is

aW5BwAw1max~2Fw,0!,

aE5BeAe1max~Fe,0!,
~D7!

aP5aW1aE1rP
pDx/Dt,

b5SPDx1rP
pYP

pDx/Dt,
2-9
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whereB5G/Dx. We use the ‘‘power law scheme’’@11# that
requires

Ai5maxF0,S 12
0.1uFi u

Bi
D 5G , i 5e,w.

Set ~D6! should be written and solved both for the veloc
and the temperature. While the above scheme can be dir
applied for the temperature case, the coupling of the velo
and the pressurep(1) ~which is defined implicitly by the con-
tinuity equation! requires a special treatment for the veloc
equation as described below.

The nondimensionalized and discretized Navier-Sto
equation~30!,

aeue5( anbunb1~pP
(1)2pE

(1)!1b, ~D8!

where the subscriptnb denotes the neighbors of pointe, can
be solved only when the pressure field is given. Unless
correct pressure field is employed, the resulting velocity fi
will not satisfy the continuity equation. We use the iterati
SIMPLER algorithm @11# to couple the velocity and the pres
sure fields. This algorithm is based on successive correct
of the velocity field and pressure field at a given time st
The velocity and pressure variables are decomposed as
lows:

u5u* 1u8,
~D9!

p(1)5p(1)* 1p(1)8,

where the asterisk denotes the guesses and the prime de
the corrections. The steps of theSIMPLER algorithm are the
following

~1! Start with a guessed velocity field.
~2! A pseudovelocityû ~without taking into account the

pressure gradient! is first computed and is defined as

ûe5
( anbunb1b

ae
, ~D10!

whereunb represents the neighbor velocities.û satisfies
n

, in
e

A

on
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ue5ûe1
pP

(1)* 2pE
(1)*

ae
. ~D11!

~3! Compute the pressurep(1)* whose equation is de
duced by applying the divergence operator to Eq.~D11! and
using the continuity equation~D4!:

S rw

aw
1

re

ae
D pP

(1)* 5
rw

aw
pW

(1)* 1
re

ae
pE

(1)* 1
rP

p2rP

Dt
Dx2reûe

1rwûw . ~D12!

~4! Solve Eq. ~D8! with p(1)* used for p(1), and thus
obtainingu* .

~5! Compute p(1)8 whose equation is obtained anal
gously to Eq.~D12! from

ue5ue* 1
~pP

(1)82pE
(1)8!

ae
. ~D13!

It takes the form

S rw

aw
1

re

ae
D pP

(1)85
rw

aw
pW

(1)81
re

ae
pE

(1)81
rP

p2rP

Dt
Dx2reue*

1rwuw* . ~D14!

~6! Calculate the velocityu using Eq.~D13!. Do not cor-
rect the pressurep(1), p(1)8 is used to correct only the veloc
ity field, the pressure being computed by Eq.~D14!.

~7! Solve the energy equation forT using the obtainedu
values.

~8! Calculate the density distribution andp(0) via Eqs.
~33! and ~34!.

~9! Return to step 2 and repeat until the converged so
tion is obtained.

It has to be noted that whereas the fractional stepPISO

algorithm @10# is successful in resolving Eqs.~29!–~32! on
the acoustic time scale, it is not the case when the acou
filtering method is used. Due to the different meanings
pressure~see Sec. III C! in the momentum equation~involv-
ing p(1)) and in the energy equation~involving p(0)), it ap-
pears that only an iterative algorithm can correctly couple
thermodynamic field and the velocity field, thePISO algo-
rithm leading to unstable solutions.
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